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The problem of defining and estimating the velocity of disturbances in a 
crystal is investigated. Some results are given for plane rotors and an- 
harmonic systems. 
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1. I N T R O D U C T I O N  

In the last few years, many papers have been devoted to the investigation of 
the time evolution of classical systems with infinite degrees of  freedom. The 
earlier papers proved the existence and unicity of the time evolution, which 
essentially means a weak dependence of the evolution of local observables on 
distant events/1-8~ Of  course, it would be very interesting to know the asymp- 
totic behavior of  such systems in time; for instance, how a local perturbation 
disappears and a nonequilibrium state relaxes to the equilibrium one: this 
naturally is a very hard problem. Moreover, it is also difficult to obtain 
interesting estimates for large time because the proofs given in these earlier 
papers use essentially estimates at fixed time. 

In this paper we study a particular asymptotic property of the time 
evolution of lattice systems; more precisely, we shall try to describe the prop- 
agation of the perturbations in a crystal. All our considerations will be 
made in the framework of classical mechanics and will follow the approach 
proposed for quantum lattices by  Lieb and Robinson in Ref. 9. In that paper  
the authors consider an infinite quantum lattice and a time evolution derived 
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by a sufficiently regular Hamiltonian. They proved that if A and B are two 
observables localized at the origin and Ba is the observable corresponding to 
B translated a distance d, denoting by at the time evolution, then 
II[A, ~t(Ba)]llt~---~0 exponentially rapidly if d >1 ct for some constant c 
which may be interpreted from a physical point of view as an upper bound 
for the group velocity. 

An analogous approach can be developed, at least in principle, by re- 
placing the commutator with Poisson brackets (this means estimating the 
derivative of a time-evolved coordinate localized at distance d with respect to 
the initial data localized at the origin; this quantity gives the dependence of 
the evolution on a perturbation of the initial data). 

We say that we have a finite velocity of perturbation if the following is 
the case: if A and B are two observables localized at the origin (i.e., two 
functions in phase space depending only on the spin at the origin), then 
{A, ~(B~)} is small if d depends linearly on t, that is, Ba is essentially localized 
in a sphere of radius ct. One might suspect that {A, ~t(Ba)} goes to zero as t 
increases not because we are displacing the observable B rapidly, but because 
of the dispersive properties of the matter, according to which, for each pair 
of local observables, we should have {A, ~t(B)}t~ ~ -+ 0. We remark that at 
least in the case of the harmonic chain the two properties have different 
orders of magnitude. In this case, in fact, it is possible to exhibit a cone in 
spacetime with slope c, such that if A is localized at the origin and B is 
localized at a distance less than ct, then {A, at(B)} is of the order of 1/V'7, and 
is exponentially small in t if B is localized at a distance greater than ct. 
Unfortunately it is not easy to make a complete analysis of the asymptotic 
behavior of the Poisson brackets beyond the case of the harmonic chain. In 
this paper we deal only with the problem of finding a dependence d = d(t) in 
order to obtain an exponentially small {A, at(Be)}. 

After an analysis of known results on the harmonic chain, we investigate 
two models. The first one, a lattice of compact spins interacting with bounded 
forces, is found to exhibit a linear dependence of d on t for all configurations 
in phase space. The second is a lattice of anharmonic oscillators whose time 
evolution has been studied in Ref. 3. The dynamical estimates on the displace- 
ment and on the momentum of an oscillator are not good enough for our 
purpose because they take into account all possible energies transferred by 
the other oscillators; in fact we are interested in thermodynamically relevant 
configurations and hence with infinite total energy. So one could show that 
these cooperative effects indicate that d(t) increases more than exponentially 
with t. Such bad estimates may be greatly improved by the explicit use of the 
Gibbs state invariance with respect to the time evolution. 

So we are induced to investigate the quantity f dw [{A, at(Ba)}] =- 
]I{A, et(Ba)} [[, where co is a Gibbs state of the system. We prove that the above 
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quantity is exponentially small if d ~ t3/~ This result is not satisfactory from 
the point of view of the group velocity concept, but it remains a nontrivial 
estimate for asymptotic time behavior. Moreover, we show that disturbances 
measured in term of local energy do propagate with finite velocity for all con- 
figurations typical of the equilibrium state. The t 4/3 estimate depends on the 
state co, while the other result was purely mechanical; this is of course a limita- 
tion of the range of our results. On the other hand, as in the simple example 
which follows, sometimes there simply does not exist a purely mechanical 
estimate of the velocity of propagation: let us consider a semiinfinite, one- 
dimensional system of hard rods of length 3 placed at the points {x~}~Z0, 
x = Xo < xl ... and such that [x~+l - x~[ = 3 + a~ and a~ <~ 1/i. All the 
hard rods are supposed to have equal masses and to be initially at rest. If  we 
give a velocity v to the first particle directed on the right, according to the 
exchange of velocity we can follow the perturbation by looking at the moving 
particle. After the time t the moving particle is at distance s( t )  = vt + h(t)3,  
where n(t)  is the number of collisions that have occurred during the time t; 
n(t)  is the maximal integer for which ~.~(=t~ a, <~ vt. Hence s( t )  increases not 
less than exponentially in time. 

Clearly such a configuration is exceptional with respect to a "physical"  
state, i.e., a state with density less than the close-packing one. 

The plan of the paper is the following. In Section 2 we give some de- 
finitions. The harmonic chain is treated in Section 3. Sections 4 and 5 are 
devoted to the plane rotor model (the compact spin model) and to the an- 
harmonic crystal. 

2. G E N E R A L  F R A M E W O R K  

Let us consider the v-dimensional lattice Z v. At every site i ~ yv there is 
associated a space T~ that is S 1 x R 1 or R 1 x R 1. The points of T~ are 
respectively denoted by x~ = (0~, oJ~) or x~ = (qi, P~). 

We denote by ~ the phase space 1 - ~ "  T~. We take ~ to be equipped 
with the product topology and its points are denoted x ,  y ,  z, etc. 

For  any bounded A c Z v we define the phase space associated with the 
region A by ~ .  = i-I~A T~. Le t fa :  NA--> R be a differentiable function with 
bounded derivative, f .  induces a function f :  ~ --> R by the following de- 
finition: 

f ( x )  = f A ( x . ) ,  x ~ X (1) 

where Xa denotes the restriction on ZA of x. 
We denote by ~(A) the algebra of all function of such type and 

= U 
A ~ Zv ,A  f ini te 
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the algebra of all local functions. Since every f E  9~ depends only on a finite 
number of coordinates, the following definition is reasonable: 

{f, g}(x) = E "~~ 8Q~ 8Pi (x) (2) 
~e?Tv 

where (Q~, P~) = (0~, w~) or (q~, p~). It is obvious that (2) still makes sense if 
we choose f ~  ~ and any differentiable function g: X -+ R because in (2) 
only a finite number derivatives will appear. 

In what follows we shall introduce a subset Xo c X in which a one- 
parameter group of transformations (the solution of the motion equations) 
Vt ~ R, St: Xo ~ Xo, is defined with the property that (Stx)~ = (Q~(t), P~(t)) 
is a couple of differentiable functions with respect to Qj or Pj, for all t, 
where x - (Qj, PJ)~~z" e z0  are the initial coordinates. 

Defining by (Vtg)(x) = g(S-tx), x ~ Xo for g e ~1, the main object of our 
investigation will be {f ,  Vegj}(x), where go,fo ~ ~l(0) when simultaneously 
t -+ oo and I i - j I ~ oo ; here f and gj denote the translates o f f  and g at the 
sites i and j, i.e., the same functions f and g thought of as functions respec- 
tively from T~ and Tj to R. The following estimates will be useful: 

8Vtgj ~f 8Vtg, (x) 
[{f,, gtg~}l(x)= aQ, F-P[[ 8P, 80, 

8f~ (Sg, s t" 8P,(t) 8gy 8Q,(t)~ 
= 8Q, \sPs _ 8P--7 + 8Q~ ~_,~ 8~, ! 

8f, [Sg~ I 8F,(t) eg ~-,~ 8Q~(t) (x) 
8P, \se j  Is_,~ 8Q-----~- + ~ 8Q, 

~< II vfH ~ II Vg II ~u~,,(t, x) (3) 

Here (Qj(t), Py(t)) denotes the j coordinate of S_tx, tl Vfll ~ and [[ Vg II ~ are 
the maxima of all the derivatives o f f  and g, and 

(4) 
8P~ 8Q, ] 

3. T H E  H A R M O N I C  C H A I N  

We consider the one-dimensional lattice ~71Ti = R 1 x R 1. The Hamil- 
tonian is 

H = ~ [(pi2/2m) + k(q~ - q~_l) 2] (5) 

and the equations of the motion are 

(~ = Pd m, b~ = k(q~ +1 - 2q~ + q,_ 1) (6) 
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The existence of the solution of Eqs. (6) has been proven for a large class of 
initial data in ~ in Refs. 10 and 11, more precisely for all the configurations 
x = (q~, P0, i s Z, that have q~ and p~ exponentially increasing as Ill ---> oo. 
The central point in the estimation of the Poisson brackets is that the deriv- 
atives of q~(t) and p~(t) with respect to initial data satisfy the same equations 
(6) but with initial data of finite energy. For such initial data the solution 
can be giver/explicitly, a1'12) so the Poisson brackets can be evaluated directly. 
We denote X / =  ~qj(t)/~q~; then 

Xi~(t) = (k /m)[x}+l( t )  - 2x/(t) + X}-l(t)] 

x/(0) = 8~,i,  2s'(0) = 0 (7) 

In the case in which i = 0, (7) has the solution 

Xj~ = J2j(2ct) (8) 

where c = (k /m)  1/2, and the Jh(z) are the Bessel functions of the first type. 

Proposition 3.1. L e t f a n d  g e 9.1(0). Let us wri tej  for the integer part 
of [/3t ]. Then for all exponentially increasing configuration x ~ ~ we have: 

(i) {f, Vtgj}(x) t__>~> 0 as 1/~/7 if fl < c 

(ii) {f, Vtgj}(x) t-~| > 0 exponentially if/3 > c 

We remark that the group velocity given in term of Poisson brackets, that 
is, the slope of the cone separating the asymptotic behavior 1/V'7 from the 
exponential one, coincides with the natural notion arising by considering 
the normal modes of the crystal or the analog of Eqs. (6) with the wave 
equation. 

The proof is a simple consequence of the following asymptotic estimates: 
L e t j  > 0 for large j ;  then 

, ,cos ~'I " ~ J ~ ]  o < 7 < ff 

( 2j ) exp(2j tghc~-2j~)  
J2j ~ ~ (4j~rtgha) 112 ' ~ > 0 

4. PLANE ROTATORS 

In this section we study the system described by the following formal 
Hamiltonian: 
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where i e Z ~, 0i �9 S 1, oJt �9 N, 1 E is a constant, V~ = {j[ ]i - j[  = 1}, and 

The one-particle phase space is T, = S ~ x ~ ,  and the phase space is 
X = I-~,~v T~. The dynamics of the system is described by the following 
equations: 

O~(t) = to,(t) 

@(t)  = F~(x(t)), (0 , (0 ) ,  o ~ ( o ) ) , ~  = x e x 
(10) 

where 

F~(x) = ~ s sin(0~ - 0j.), 
y~V~ 

x = (0~, o~,)~v 

P r o p o s i t i o n  4.1. For  all x �9 Y(, there exists a one-parameter group 
of transformations x -~  S~x - x ( t )  = (Oi(t), co~(t))~v such that O~(t) and 
coi(t) satisfy (10). 

We do not prove Proposition 4.1, which can be easily obtained by the 
use of the same arguments in Ref. 3. 

We note only that the existence of the solution o f  Eqs. (10) may be 
obtained by considering that the dynamics would not exist if the kinetic 
energy of a particle grows too large. But the following estimate prevents 
this from happening: 

ld(o~?12)ldtl = I,o,F,(x(t))l  < Io~,(t)f2v (11) 

This implies 

oJ,2(t)/2 <~ (oh/'V"J + ~V'2 vt) 2 (12) 

Furthermore, the derivatives of O,(t) and oJ,(t) with respective to the initial 
data exist there and satisfy the following integral equalities: 

f~ ~~ a~ 8~ j + (s)  ds 
~0~ = , 

ao, = ..fl ,.~, cos[O,(s)- ao, _ a,, 

aej(t) s ~Oj(s) 

-'{ 
'~,(t).~, = 8~,. + Jo ds ~v, cos[O,(s) - O.(s)] ' ) .O.(s)~ ])\ (13) 
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We put 

Then 

and hence 

~F/(t) = OOj(t)/O0~, ~F ~ = {W/}j~e~, 

[A(~)'v'], = ~ A(~)#Vh' 
h 

Ayh(S) = cos[0s(s ) -- 0h(s)], j # k, 

A . ( s )  = - ~ .  cos[0j(s) - 0h(s)] 

A j h ( s ) = O  if k6V~ 

k e  Vj (14) 

�9 / ( t )  = ~,,j + (t - s)[A(s)'W(s)]~ as (15) 

qP/(t) = ~.j + dq dtz ... dr. 

• ( t -  h)"'" (tn-1 -- t . ) [A(h) ' "  A(t.)~,]y (16) 

The series (16) is easily seen to be absolutely convergent. Furthermore, 

if k<<.n 
(17) 

otherwise 

putting k = ]i - j ] ,  one has 

[A(q) ... A(t.)~], = ~ A(hls,hl "" A(t.)h._~,~ 
k l " " h a  - 1 

= 0  

Hence 

(28) 

Itl2" [(2~ + 1)~] =~ 
n ~ > h  

Itl ~h+l 1)~]2h+1 ~< ( 2 k T  1-)! [(2v + exp[(2v + 1)E[tl] 

Finally, by putting b = (2v + I)/~, and applying Stirling's formula, we 
obtain 

1 [ eb[t] ~2~+1 
J~F/(t)l ~< [4rr(2k + 1)11/z ! ~ 1  

If  I tl ~< k/c 

1 eb [ 
[q~j'(t)J ~< [4~(2k + 1)] 1'2 c(2 + 1/k) (2 

Choosing c such that 

exp(b]t[) (19) 

b b 

+ 01 

(b/2c) exp[(b/2e) + 1] < 1 (21) 
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estimating the other derivatives in the same way, and using the inequality 
(3), we prove the following theorem: 

T h e o r e m  4.1. There exists an increasing function ~ such that if c 
satisfies (21), then 

lim i{f ,  VtfJ}[(x) e"(~)~ = 0 

where f ,  g ~ ~J(0) and x s ~.  

5, A N H A R M O N I C  SYSTEMS 

In this section we study a system for which T~ = R 1 x ~1, i E 7/', and 
the Hamiltonian is formally given by 

(�89 ~ + kqi ~ + Aqi ~ -  Jqi ~ q,) (22) 
iEVj 

where k, Z, J > 0. 
The Hamiltonian (22) describes a physical model of anharmonic oscil- 

lators. If h = 0, we have the harmonic case. 
We introduce the following functions: 

5f~(x) = �89 + kq2 + Aq~ + 1, x E  X 

s = sup[1/~v(k)] sup 5~*(x) (23) 
ken i~Ah: 

where A k = [ - k ,  k] ~ and r = logik I V 1. 
We denote by No the following subset of X : 

• = {x < (23') 

The following theorem gives the existence of the time evolution of the 
infinite system we are considering. 

T h e o r e m  5.1. (Lanford et al. (8)) There exists a one-parameter group 
of transformations St: No-+ No, t e R, such that: 

(i) For  all x ~ No, Stx =- (q,(t), p i ( t ) ) , ~  represents the solution of the 
equations of motion 

dq~/dt = p,, apt~at = F,(Stx) 

Here F~(x) represents the force induced by the configuration x on the ith 
oscillator: 

F~(x) = -4Aq~ a - 2kq~ + Jj~r q~, x ~ (q~,p~)~, 
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(ii) The following estimate holds: 

]d~'(&x)/dt[ <~ ~ a ,~ ' (S ,x )  
J~V~ 

and hence 

where a~.j are independent of x and t and a = max~,j a~j. 

Let o~ be a state, i.e., a Borel probability measure on X, that satisfies 
the following superstability estimate: 

P0~(dx~) ~< A exp(-klp~ 2 - k2q~ 4) dq~ dp~ (24) 

where P,o is the relativization of the measure ~o on Z(~,  i ~ 7/v, and kl and k2 
are constant not depending on i. It is possible to check that o~(X0) = 1. We 
shall suppose that co is time invariant, i.e., oJ (V t f )=  oJ(f) if fEg./ and 
(V t f ) ( x )  = f (S_ t x ) ,  x ~ Xo.  An example of such a state is the Gibbs state 
obtained as the thermodynamic limit of finite-volume Gibbs states with zero 
boundary conditions. (~3~ 

T h e o r e m  5.2. Let oJ be an invariant state satisfying (24). Then for all 
f ,  g ~ 9.1(0) and b ~ ~ + 

lim ]]{f, Vtg~}llze bt = 0 

I S - j l a l 4 1 t  ~ oo 

Here 11" tip denotes the norm in L~(w). 

ProoL On the basis of (3), we have to estimate the following quantities 
[ S t x =  (qj(t), p j ( t ) ) j~ , ,  x = (qj, p j ) j~ ,  ~ Zo]: 

~q~(t) = ( ds op~ (s) 
ep, 2o ~p, 

eP~(t) - 8, j + s c!S~p~ (X(S)) 
~ P i  ' " 

Oqy(t) ~ j + ds Opj. , ~q~ = ' Fq~ tS) 

epj(t) [t ds bFj 
eq, = Jo ~ (x(s)) 

which exist in virtue of  Theorem 5. l(ii). 
Defining ~/( t )  = Oqj(t)/Oqi, one has 

~;(t) = ~,,j + (t - s)[B(s)~(s)lj as 

(25) 

(26) 
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where q~ = {%*(s)}s~, and 

[B(s)u]j = [-12,~q9(s) - 2k]uj + J ~ ,  u, (27) 
leVI 

Equality (26) is the integral version of a nonautonomous differential problem 
whose solution is 

%*(t) = 8~,j + J0 dtl at2 ... dt,(t - t l ) . . .  ( t ,_ l  - t,) 

• [B(t0 ... B(t,)8,]j (28) 

By the use of the estimate (ii) of Theorem 5.1 the series (28) is easily seen to be 
absolutely convergent for fixed t and x ~ No. Unfortunately, for our purpose, 
this point-by-point estimate is a bad one, so we try an Ll(o 0 estimate with 
the aim of avoiding high-energy effects by the explicit use of the conservation 
of the measure. 

Let us put k = [i - j ] ;  then 

[B(t0 ... B(t~)8,]j = ~ B(q)j,kl "'" Bk,_l,,(t~) if k ~< n 
~ '"~,-1 (29) 

= 0  i f k > n  

where the Bj,k(s) are the components of the operator B defined by 

Bj~(s) = [- lZqj2(s)  - 2k]~j~ + J ~ 8z~ 
IEVj 

we can estimate (29) in the following way: every term in (29) represents an 
n-step walk with some permanences, which arise from the diagonal term 
Q~(t) = [-127,q~2(t) - 2k], and with the remaining one-step jumps de- 
scribed by the term J. 

Then if k ~< n 

t n -8  (29) = ~ *  ~ O~(taa)... Q~( ~)J 
~=o (30) 

0 < ai ~< n, a~#  a j, a , e  

where ~* means a sum over all the possible walks with s permanences. By the 
use of the HStder inequality, the invariance of the measure, and inequality 
(24), one finally gets that there exists a constant R > 1 such that 

n-h: f 1](29)[1~ <~ (2v + 1) ~ ~ J"-~ ]Q~l(t~).-. Q~,(t~,)] doJ 
8=0 

< (2, + 1) ~ ~ I Q~(0)[ ~ do,/ ... I Q,0(0)I ~ 
S=0 

~< (2v + 1)" ~ J~-~R~s ~/2 (31) 
S=0 
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and so 

I tl2~R~-~(J + 1)~[(n - k)/2](~-k)/~ ~< ~=k (2n)[ (n - k + 1)2 (~-k)/s 

I t l2"O"[(n  - k + 2)/2]! 
~< 2 .  [(n --  k"+ 2 ~  ~n-~-- ~-k - 1)! 

Eqt] 
~< r! r = 2 1 c - 1  

<~ It] - 2k/a + 2 [exp(Et~/a)](Zt~/8) 2~ (32) 
(2k)! 

where D and E are suitable constants. Using the Stifling formula and putting 
t 4/a = k, one gets 

[Iq~/(t)lll <<. k -(~/2)+ ~(eEeE) 2~ (33) 

The other derivatives may be estimated in the same way. So Theorem 5.2 
easily follows from (33) and (3). 

Comments on theproof. The estimate (32) may be improved, but not very 
much, as can be seen by considering only the term s = n - k, n /> k, in (32). 
We finally remark that the behavior s ~2 in (31) is replaced with s*r(~-1)m in 
the case in which the anharmonic restoring potential is given by Aq ==. In 
this case we must take a power smaller than in Theorem 5.2. 

I f  we take the notion of group velocity in terms of Poisson brackets or 
the commutator as in Ref. 9, Theorem 5.2 is not satisfactory from this 
point of view. Nevertheless we are able to prove that the perturbations 
measured in terms of the local energy do propagate with finite velocity. 

Theorem 5.3. Let x, ff e ~0 be two configurations differing only in 
the origin. Then there exists an increasing positive function t~ = t~(c)such 
that 

lim ]Sek(Stx) - s "(~)~ = 0 
Ikl/> c~ 

if c satisfies (2v + 1)a exp[(a/c) + 1] < c. 

,Drool By Theorem 5.1(ii) we have (t > 0) 

P t 

~ k ( S t x  ) <~ ~ | akjLPJ(S~x) dr + s (34) 
J Jo 
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and hence (Ikl > 1) 

Itll,~J-1 
jse~(s~x) - ~ (s~) l  < ~ ~ ,.. ~ (Ikl - 1 ) !  

J!~Vk J~egtz J~- l~v~k- 2 

• a ~ j l a j j ~  . . .  %_~j~_l[Z~(x) + ~ (2 ) ] e  (~'~' log(Elk3 

where we have iterated (34) Ik[ - 1 times. Thus 

f ~ ( S ~ x )  - Z~(S~) ]  

~< (2v + l) l~l-~ log(2]k])a Ikl-~e~m[~(x) + A~(2)] ([kl _ 1)! 

[(2v + 1)ateqlkl-1 log(2tk[) e~lt I 
~< [ /-k~ -- ]- ] [Lea(x) + L~(2)] (2,~lk])~/2 

and this concludes the proof. 
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